C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Topology-I

Subject Code : 5SC01MTC4

Branch : M. Sc. (Mathematics)

(07)

Semester : 1 Date : 7 / 12 / 2015 Time : 10:30 To 1:30 Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions

a. Define: Discrete topology. [2] **b.** Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, b, c\}\}$ be a topology on X. Find [2] open sets and closed set of τ on X. c. If $A = [0] \cup (1, 2)$ then find \overline{A} . [1] **d.** Define: Hausdorff space. [2] Q-2 Attempt all questions (14) a) Show that a subspace of a regular space is regular. [6] **b**) Define: Countable complement topology. Hence show that countable complement [6] topology (τ_c) is a topology on X. c) If τ is a topology generated by the basis \mathcal{B} then show that $\mathcal{B} \subset \tau$. [2] OR Q-2 Attempt all questions (14) a) Let A, B and A_{α} denote subsets of a topological space X. Prove that [6] $\overline{A \cup B} = \overline{A} \cup \overline{B}.$ **b**) Show that the lower limit topology τ_l on R is strictly finer than the standard [6] topology τ . c) Show that [a, b] is closed in R. [2] **Attempt all questions** Q-3 (14) a) Let X = R and $\mathcal{B} = \{(a, b)/a, b \in R\}$. Then show that \mathcal{B} is a basis for a topology [5] on R. **b**) Show that if Y is a subspace of X and $A \subset Y$, then the subspace topology on A as [5] a subspace of Y is the same as the subspace topology on A as a subspace of X.

Page 1 || 2

		OR	
Q-3	a)	Show that if a space satisfies the second axiom of countability then it satisfies the	[5]
	b)	Show that T_{a} —space is a T_{a} —space	[5]
	c)	Show that intersection of two topologies is also topology on X. What can you say	[]
	C)	about union of two topologies? Justify your answer. SECTION – II	[4]
0-4		Attempt the Following questions	
χ.		The proving questions	(07)
	a.	Define: Normal space.	[2]
	b.	State Urysohn lemma.	[2]
	c.	Define: Metric topology.	[2]
	d.	Define: Separable space.	[1]
Q-5		Attempt all questions	(14)
	a)	Let X be a metrizable space then show that if X is separable then X is second countable.	[5]
	b)	Every normal space is a regular space.	[5]
	c)	Every compact subset of a Hausdorff space is closed.	[4]
Q-5	a)	If Y is a compact subset of a Hausdorff space X and $x_0 \notin Y$ then show that there exists open set U and V such that $x_0 \in U, Y \subset V$ and $U \cap V = \emptyset$.	[5]
	b)	Every closed subset of a compact space is compact.	[5]
	c)	Is the space R_l connected? Justify your answer.	[4]
Q-6		Attempt all questions	(14)
	a)	Define: Topology. Hence find all the topologies of the set $X = \{a, b, c\}$.	[5]
	b)	Show that $\tau_l = \{A \subset R / \text{for each } x \in A, \exists \epsilon > 0 \exists [x, x + \epsilon] \subset A\} \cup \{\phi\} \text{ is a topology on } X = R.$	[5]
	c)	Let <i>X</i> be a set. Show that the collection	[4]
		$\tau_{\infty} = \{U/X - U \text{ is infinite or } X - U = X\}$ is not a topology on X.	
0_6	D)	UK Define: Subbasis Let $Y = P \cup \{-\infty\} S = \{[-\infty, a] / a \in P\} \cup \{[h, \infty] / h \in P\}$ is	
V-N	a)	a subbasis for a topology on X.	[5]

c) If y is a point of the basis element $B(x, \epsilon)$ then show that there is a basis element

 $B(y, \delta)$ such that $B(y, \delta) \subset B(x, \epsilon)$.

[4]

[5]

[4]

b) Show that $\mathcal{B} = \{(a \times b, a \times d)/b < d\}$ is a basis for the order topology on $R \times R$.

c) Show that a product of two Hausdorff spaces is Hausdorff.

Page 2 || 2

